Specificity of activation by phosphoinositides determines lipid regulation of Kir channels.

نویسندگان

  • Tibor Rohács
  • Coeli M B Lopes
  • Taihao Jin
  • Pavan P Ramdya
  • Zoltán Molnár
  • Diomedes E Logothetis
چکیده

Phosphoinositides are critical regulators of ion channel and transporter activity. Defects in interactions of inwardly rectifying potassium (Kir) channels with phosphoinositides lead to disease. ATP-sensitive K(+) channels (K(ATP)) are unique among Kir channels in that they serve as metabolic sensors, inhibited by ATP while stimulated by long-chain (LC) acyl-CoA. Here we show that K(ATP) are the least specific Kir channels in their activation by phosphoinositides and we demonstrate that LC acyl-CoA activation of these channels depends on their low phosphoinositide specificity. We provide a systematic characterization of phosphoinositide specificity of the entire Kir channel family expressed in Xenopus oocytes and identify molecular determinants of such specificity. We show that mutations in the Kir2.1 channel decreasing phosphoinositide specificity allow activation by LC acyl-CoA. Our data demonstrate that differences in phosphoinositide specificity determine the modulation of Kir channel activity by distinct regulatory lipids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Highly Charged Anionic Lipids Bind and Regulate Ion Channels

The modulation of channel activity by direct interaction with membrane lipids is now an emerging theme in ion channel biology. In particular, phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP 2) are known to regulate the activity of most major classes of ion channel, as well as a number of other membrane transport proteins. The regulation of inwardly rectifying (Kir) potassiu...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

Phosphoinositide regulation of inward rectifier potassium (Kir) channels

Inward rectifier potassium (Kir) channels are integral membrane proteins charged with a key role in establishing the resting membrane potential of excitable cells through selective control of the permeation of K(+) ions across cell membranes. In conjunction with secondary anionic phospholipids, members of this family are directly regulated by phosphoinositides (PIPs) in the absence of other pro...

متن کامل

Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing.

Inhibition by intracellular H(+) (pH gating) and activation by phosphoinositides such as PIP(2) (PIP(2)-gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP(2) gating and pH gating are controlled by an intra-subunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in...

متن کامل

Silent inward rectifier K+ channels in hypercholesterolemia.

Hypercholesterolemia is an independent risk factor for development of cardiovascular disease1 and has been demonstrated to impair endothelium-dependent and independent vasodilatation.2 However, the mechanisms responsible for changes in vascular reactivity and impaired blood flow regulation induced by hypercholesterolemia remain unclear. Previous studies in cultured endothelial cells have shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2003